Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates.

نویسندگان

  • Weinan E
  • Di Liu
  • Eric Vanden-Eijnden
چکیده

An efficient simulation algorithm for chemical kinetic systems with disparate rates is proposed. This new algorithm is quite general, and it amounts to a simple and seamless modification of the classical stochastic simulation algorithm (SSA), also known as the Gillespie [J. Comput. Phys. 22, 403 (1976); J. Phys. Chem. 81, 2340 (1977)] algorithm. The basic idea is to use an outer SSA to simulate the slow processes with rates computed from an inner SSA which simulates the fast reactions. Averaging theorems for Markov processes can be used to identify the fast and slow variables in the system as well as the effective dynamics over the slow time scale, even though the algorithm itself does not rely on such information. This nested SSA can be easily generalized to systems with more than two separated time scales. Convergence and efficiency of the algorithm are discussed using the established error estimates and illustrated through examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on “ Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates ” [ JCP 123 , 194107 ( 2005 ) ]

The slow-scale stochastic simulation algorithm (ssSSA) proposed in [J. Chem. Phys. 122, 014116 (2005)] and the nested stochastic simulation algorithm (nSSA) proposed in [J. Chem. Phys. 123,194107 (2005)] are closely related approximate simulation procedures aimed at speeding up the stochastic simulation of stiff chemical systems, i.e., systems that evolve through fast and slow dynamical modes w...

متن کامل

Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales

We present an efficient numerical algorithm for simulating chemical kinetic systems with multiple time scales. This algorithm is an improvement of the traditional stochastic simulation algorithm (SSA), also known as Gillespie’s algorithm. It is in the form of a nested SSA and uses an outer SSA to simulate the slow reactions with rates computed from realizations of inner SSAs that simulate the f...

متن کامل

Kinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction

For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using geneti...

متن کامل

Cellular growth and division in the Gillespie algorithm.

Recent experimental studies elucidating the importance of noise in gene regulation have ignited widespread interest in Gillespie's stochastic simulation technique for biochemical networks. We formulate modifications to the Gillespie algorithm which are necessary to correctly simulate chemical reactions with time-dependent reaction rates. We concentrate on time dependence of kinetic rates arisin...

متن کامل

Application of Genetic Algorithm in Kinetic Modeling of Fischer-Tropsch Synthesis

Kinetic modeling is an important issue, whose objective is the accurate determination of the rates of various reactions taking place in a reacting system. This issue is a pivotal element in the process design and development particularly for novel processes which are based on reactions taking place between various types of species. The Fischer Tropsch (FT) reactions have been used as the ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 19  شماره 

صفحات  -

تاریخ انتشار 2005